Thermal inactivation and injury of Bacillus stearothermophilus spores.

نویسندگان

  • F E Feeherry
  • D T Munsey
  • D B Rowley
چکیده

Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35...

متن کامل

Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. by high pressure and heat compared with inactivation by heat alone.

The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (F(z)(121.1)(°)(C, 0.1 MPa or 600 MPa)) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the diffe...

متن کامل

Thermal inactivation characteristics of bacterial spores at ultrahigh temperatures.

The thermal inactivation characteristics of Bacillus stearothermophilus (1518) spores and putrefactive anaerobe (PA) 3679 (NCA) spores suspended in skim milk were determined after treatment in pilot-plant ultrahigh-temperature (UHT) processing equipment. Temperature-survivor curves were constructed from survival data to emphasize the critical nature of temperature control in process evaluation....

متن کامل

Comparative characterization of silver nanoparticles synthesized by spore extract of Bacillus subtilis and Geobacillus stearothermophilus

Objective(s): Silver nanostructures have gathered remarkable attention due to their applications in diversefields. Researchers have recently demonstrated that bacterial spores are capable of reducing silver ions toelemental silver leading to formation of nanoparticles.Materials and Methods: In this study, spores of Bacillus subtilis and Geobacillus stearothermophilus wereemployed to produce sil...

متن کامل

Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms.

INTRODUCTION Cold plasma, also known as Low Temperature Atmospheric Pressure Plasma (LTAPP) is a novel technology consisting of neutral and charged particles, including free radicals, which can be used to destroy or inactivate microorganisms. Research has been conducted regarding the effect of cold plasma on gram-positive bacteria; however, there is limited research regarding its ability to ina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 1987